Mnd1p: an evolutionarily conserved protein required for meiotic recombination.

نویسندگان

  • Jennifer L Gerton
  • Joseph L DeRisi
چکیده

We used a functional genomics approach to identify a gene required for meiotic recombination, YGL183c or MND1. MND1 was spliced in meiotic cells, extending the annotated YGL183c ORF N terminus by 45 aa. Saccharomyces cerevisiae mnd1-1 mutants, in which the majority of the MND1 coding sequence was removed, arrested before the first meiotic division with a phenotype reminiscent of dmc1 mutants. Physical and genetic analysis showed that these cells initiated recombination, but did not form heteroduplex DNA or double Holliday junctions, suggesting that Mnd1p is involved in strand invasion. Orthologs of MND1 were identified in protists, several yeasts, plants, and mammals, suggesting that its function has been conserved throughout evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family

Meiotic recombination in S. cerevisiae is initiated by double-strand breaks (DSBs). In certain mutants, breaks accumulate with a covalently attached protein, suggesting that cleavage is catalyzed by the DSB-associated protein via a topoisomerase-like transesterase mechanism. We have purified these protein-DNA complexes and identified the protein as Spo11, one of several proteins required for DS...

متن کامل

P-230: Analysis of TEX15 Expression in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men Referred to Royan Institute

Background: TEX15 is a novel protein that is required for chromosomal synapsis and meiotic recombination. Human TEX15 is located on chromosome 8(8p12 region) and expressed in testis and ovary, as is its mouse ortholog. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15 deficient spermatocytes exhibit a failure in chromosomal synapsis. In ...

متن کامل

Ctp1CtIP and the Rad32Mre11 nuclease activity are required for Rec12Spo11 removal but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions

The evolutionarily conserved Mre11/Rad50/Nbs1 (MRN) complex is involved in various aspects of meiosis. Whereas available evidence suggests that the Mre11 nuclease activity might be responsible for Spo11 removal in Saccharomyces cerevisiae, this has not been experimentally confirmed. This study demonstrates for the first time that Mre11 (Schizosaccharomyces pombe Rad32Mre11) nuclease activity is...

متن کامل

MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse.

The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of ...

متن کامل

Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages

Condensin is an evolutionarily conserved protein complex that helps mediate chromosome condensation and segregation in mitotic cells. Here, we show that condensin has two activities that contribute to meiotic chromosome condensation in Saccharomyces cerevisiae. One activity, common to mitosis, helps mediate axial length compaction. A second activity promotes chromosome individualization with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 10  شماره 

صفحات  -

تاریخ انتشار 2002